Topic3. Correlation and \boldsymbol{R}-Squared

Credit by https://win-vector.com/2011/11/21/correlation-and-r-squared/

$$
L(f, y)=\sum_{i=1}^{n}\left(f_{i}-y_{i}\right)^{2} \leq \sum_{i=1}^{n}\left(a f_{i}+b-y_{i}\right)^{2}=g(a, b)
$$

Let assume f is the model that minimizes squared-error loss =>

- there is no scaling of f that will improve the fit ($a=1$)
- there is no shift of f that will improve the fit $(b=0)$
\Rightarrow Since $g(1,0)$ is the optimum, then the derivatives of g are zero here

$$
\begin{aligned}
& \frac{\partial}{\partial_{a}} g(a, b)=\sum_{i=1}^{n} 2\left(f_{i}-y_{i}\right) f_{i}=2 f \cdot f-2 y \cdot y=0 \\
& f \cdot f=y \cdot f \quad \ldots(1)
\end{aligned}
$$

$$
\frac{\partial}{\partial_{b}} g(a, b)=\sum_{i=1}^{n} 2\left(f_{i}-y_{i}\right)=0
$$

$$
\bar{f}=\bar{y}
$$

Shift the coordinate so $\bar{f}=0 \& \bar{y}=0$
$R^{2}=1-\frac{\sum_{i=1}^{n}\left(y_{i}-f_{i}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}=1-\frac{\sum_{i=1}^{n}\left(y_{i}-f_{i}\right)^{2}}{\sum_{i=1}^{n} y_{i}^{2}}=1-\frac{y \cdot y-2 y \cdot f+f \cdot f}{y \cdot y}$
Combing (1) \& (2)
$R^{2}=1-\frac{y \cdot y-f \cdot f}{y \cdot y}=\frac{f \cdot f}{y \cdot y}$
Correlation
$\rho=\frac{\frac{1}{n} \sum_{i=1}^{n} f_{i} y_{i}}{\sqrt{\left(\frac{1}{n} \sum_{i=1}^{n} f_{i}^{2}\right)\left(\frac{1}{n} \sum_{i=1}^{n} y_{i}^{2}\right)}}=\frac{f \cdot y}{\sqrt{(f \cdot f)(y \cdot y)}} .$.

Combing (1) \& (4)
$\rho=\frac{f \cdot f}{\sqrt{(f \cdot f)(y \cdot y)}}=\sqrt{\frac{f \cdot f}{y \cdot y}}$

Combing (3) \& (5)

$$
R^{2}=\rho^{2}
$$

