Topic2 - Binomial distribution

Expected value

If $X \sim B(n, p)$, that is, X is a binomially distributed random variable, with n being the total number of experiments, and p the probability of each experiment yielding a successful result, then the expected value or mean of X is:[2][3][]]

$$
E[\mathrm{X}]=\mathrm{np}
$$

This follows from the linearity of the expected value, along with fact that X is the sum of n identical Bernoulli random variables-each with expected value p. In other words, if X_{1}, \ldots, X_{n} are i.i.d. Bernoulli random variables with parameter p, then $X=X_{1}, \ldots, X_{n}$ and

$$
E[X]=E\left[X_{1}+\cdots+X_{n}\right]=E[X]_{1}+\cdots+E\left[X_{n}\right]=p+\cdots+p=n p
$$

Source https://en.wikipedia.org/wiki/Binomial distribution

Mode

$$
\begin{gathered}
f(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
\frac{f(k+1)}{f(k)}=\frac{\binom{n}{k+1} p^{k+1}(1-p)^{n-k-1}}{\binom{n}{k} p^{k}(1-p)^{n-k}}=\frac{(n-k) p}{(k+1)(1-p)} v s 1 \\
\frac{(n-k) p}{(k+1)(1-p)}=1 \\
n p-k p=k+1-k p-p \\
n p+p-1=k
\end{gathered}
$$

Let $a_{k}=P(X=k)$, we have

$$
a_{k}=\binom{n}{k} p^{k} q^{n-k} \quad \text { and } \quad a_{k+1}=\binom{n}{k+1} p^{k+1} q^{n-k-1}
$$

where as usual $q=1-p$ in binomial distribution.
We calculate the ratio $\frac{a_{k+1}}{a_{k}}$. Note that $\frac{\binom{n}{k+}}{\binom{n}{k}}$ simplifies to $\frac{n-k}{k+1}$, and therefore

$$
\frac{a_{k+1}}{a_{k}}=\frac{n-k}{k+1} \cdot \frac{p}{q}=\frac{n-k}{k+1} \cdot \frac{p}{1-p} .
$$

From this equation we can follow:

$$
\begin{aligned}
& k>(n+1) p-1 \Longrightarrow a_{k+1}<a_{k} \\
& k=(n+1) p-1 \Longrightarrow a_{k+1}=a_{k} \\
& k<(n+1) p-1 \Longrightarrow a_{k+1}>a_{k}
\end{aligned}
$$

The calculation (almost) says that we have equality of two consecutive probabilities precisely if $a_{k+1}=a_{k}$, that is, if $k=n p+p-1$. Note that $k=n p+p-1$ implies that $n p+p-1$ is an integer.

So if $k=n p+p-1$ is not an integer, there is a single mode; and if $k=n p+p-1$ is an integer, there are two modes, at $n p+p-1$ and at $n p+p$.

Not quite! We have been a little casual in our algebra. We have not paid attention to whether we might be multiplying or dividing by 0 . We also have casually accepted what the algebra seems to say, without doing a reality check.

Suppose that $p=0$. Then $n p+p-1$ is an integer, namely -1 . But whatever n is, there is a single mode, namely $k=0$. In all other situations where $n p+p-1$ is an integer, the k we have identified is non-negative.

However, suppose that $p=1$. Again, $n p+p-1$ is an integer, and again there is no double mode. The largest a_{k} occurs at one place only, namely $k=n$, since $n p+p$ is in this case beyond our range.

That completes the analysis when $n p+p-1$ is an integer. When it is not, the analysis is simple. There is a single mode, at $\lfloor n p+p\rfloor$.

Source https://math.stackexchange.com/questions/117926/finding-mode-in-
binomial-distribution/117940\#117940

