Topic 5. PCA

Find some orthonormal matrix P in $Y=P X$, then covariance matrix C_{γ} ?

$$
C_{Y}=\frac{1}{n} Y Y^{T}=\frac{1}{n} P X(P X)^{T}=P \frac{1}{n} X X^{T} P^{T}=P C_{X} P^{T}
$$

Theorem1: a matrix is symmetric if and only if it is orthogonally diagonalizable.
=> if A is orthogonally diagonalizable, A is a symmetric matrix
if A is orthogonally diagonalizable $=>A=E D E^{T}$, then

$$
A^{T}=\left(E D E^{T}\right)^{T}=E^{T T} D^{T} E^{T}=E D E^{T}=A
$$

A is a symmetric matrix

For a symmetric matrix A, let λ_{1} and λ_{2} be distinct eigenvalues for eigenvectors e_{1} and e_{2}

$$
\lambda_{1} e_{1} \cdot e_{2}=\left(\lambda_{1} e_{1}\right)^{T} e_{2}=\left(A e_{1}\right)^{T} e_{2}=e_{1}^{T} A^{T} e_{2}=e_{1}^{T} A e_{2}=e_{1}^{T}\left(\lambda_{2} e_{2}\right)=\lambda_{2} e_{1} \cdot e_{2}
$$

Let $Y=P X$, then $\boldsymbol{C}_{Y}=\boldsymbol{D}$
$C_{Y}=P C_{X} P^{T}$
$C_{X}=E D E^{T} .$.
$P=E^{T} \ldots$ (3)
Combine (1), (2), (3)

$$
C_{Y}=P C_{X} P^{T}=P E D E^{T} P^{T}=E^{T} E D E^{T} E=I D I=D
$$

