Topic 5. PCA

Find some orthonormal matrix P in Y = PX, then covariance matrix C_Y ?

$$C_Y = \frac{1}{n}YY^T = \frac{1}{n}PX(PX)^T = P\frac{1}{n}XX^TP^T = PC_XP^T$$

<u>Theorem1</u>: a matrix is symmetric *if and only if* it is orthogonally diagonalizable. => if A is orthogonally diagonalizable, A is a symmetric matrix

if A is orthogonally diagonalizable => $A = EDE^{T}$, then

$$A^T = (EDE^T)^T = E^{TT}D^TE^T = EDE^T = A$$

A is a symmetric matrix

For a symmetric matrix A, let λ_1 and λ_2 be distinct eigenvalues for eigenvectors e_1 and e_2

$$\lambda_1 e_1 \cdot e_2 = (\lambda_1 e_1)^T e_2 = (A e_1)^T e_2 = e_1^T A^T e_2 = e_1^T A e_2 = e_1^T (\lambda_2 e_2) = \lambda_2 e_1 \cdot e_2$$

Let Y = PX, then $C_Y = D$ $C_Y = PC_X P^T \dots (1)$ $C_X = EDE^T \dots (2)$ $P = E^T \dots (3)$ Combine (1), (2), (3) $C_Y = PC_X P^T = PEDE^T P^T = E^T EDE^T E = IDI = D$